Nokia 5110 Example C source – PIC16F

Here some information to get these displays going.

16lf1709_coiltest (complete source code for test project, 16LF1709 PIC Microcontroller)

DSC01974

1. They are designed for 3 volts, and are not well suited for 5 volts. It is however possible, inserting resistors into the serial port lines.

2. All lines should be connected, CE should be asserted/deasserted, as well RST should be worked early after powering up. It is however possible to connected CE to ground.

3. The LCD must be initialized, as well it must be cleared after powering up.

4. The adapter PCBs often have resistors for the backlight, and a jumper bridge. Sometimes the displays are worked at 5 volts however they are not designed for this, one batch may work, another may fail after a short time. Use a 3 volts microcontroller for these displays.

Here an example source code.


/******************************************************************************/
/* Files to Include */
/******************************************************************************/
#if defined(__XC)
#include <xc.h> /* XC8 General Include File */
#elif defined(HI_TECH_C)
#include <htc.h> /* HiTech General Include File */
#endif
#include <stdint.h> /* For uint8_t definition */
#include <stdbool.h> /* For true/false definition */
#include “user.h”
/******************************************************************************/
/* User Functions */
/******************************************************************************/
#define LCD_CLK LATCbits.LATC5
#define LCD_DIN LATCbits.LATC4
#define LCD_DC LATCbits.LATC3
#define LCD_CE LATCbits.LATC6
#define LCD_RST LATCbits.LATC7
//The DC pin tells the LCD if we are sending a command or data
#define LCD_COMMAND 0
#define LCD_DATA 1
//You may find a different size screen, but this one is 84 by 48 pixels
#define LCD_X 84
#define LCD_Y 48
/* <Initialize variables in user.h and insert code for user algorithms.> */
const unsigned char ASCII[][5] = {
{0x00, 0x00, 0x00, 0x00, 0x00} // 20
,{0x00, 0x00, 0x5f, 0x00, 0x00} // 21 !
,{0x00, 0x07, 0x00, 0x07, 0x00} // 22 ”
,{0x14, 0x7f, 0x14, 0x7f, 0x14} // 23 #
,{0x24, 0x2a, 0x7f, 0x2a, 0x12} // 24 $
,{0x23, 0x13, 0x08, 0x64, 0x62} // 25 %
,{0x36, 0x49, 0x55, 0x22, 0x50} // 26 &
,{0x00, 0x05, 0x03, 0x00, 0x00} // 27 ‘
,{0x00, 0x1c, 0x22, 0x41, 0x00} // 28 (
,{0x00, 0x41, 0x22, 0x1c, 0x00} // 29 )
,{0x14, 0x08, 0x3e, 0x08, 0x14} // 2a *
,{0x08, 0x08, 0x3e, 0x08, 0x08} // 2b +
,{0x00, 0x50, 0x30, 0x00, 0x00} // 2c ,
,{0x08, 0x08, 0x08, 0x08, 0x08} // 2d –
,{0x00, 0x60, 0x60, 0x00, 0x00} // 2e .
,{0x20, 0x10, 0x08, 0x04, 0x02} // 2f /
,{0x3e, 0x51, 0x49, 0x45, 0x3e} // 30 0
,{0x00, 0x42, 0x7f, 0x40, 0x00} // 31 1
,{0x42, 0x61, 0x51, 0x49, 0x46} // 32 2
,{0x21, 0x41, 0x45, 0x4b, 0x31} // 33 3
,{0x18, 0x14, 0x12, 0x7f, 0x10} // 34 4
,{0x27, 0x45, 0x45, 0x45, 0x39} // 35 5
,{0x3c, 0x4a, 0x49, 0x49, 0x30} // 36 6
,{0x01, 0x71, 0x09, 0x05, 0x03} // 37 7
,{0x36, 0x49, 0x49, 0x49, 0x36} // 38 8
,{0x06, 0x49, 0x49, 0x29, 0x1e} // 39 9
,{0x00, 0x36, 0x36, 0x00, 0x00} // 3a :
,{0x00, 0x56, 0x36, 0x00, 0x00} // 3b ;
,{0x08, 0x14, 0x22, 0x41, 0x00} // 3c <
,{0x14, 0x14, 0x14, 0x14, 0x14} // 3d =
,{0x00, 0x41, 0x22, 0x14, 0x08} // 3e >
,{0x02, 0x01, 0x51, 0x09, 0x06} // 3f ?
,{0x32, 0x49, 0x79, 0x41, 0x3e} // 40 @
,{0x7e, 0x11, 0x11, 0x11, 0x7e} // 41 A
,{0x7f, 0x49, 0x49, 0x49, 0x36} // 42 B
,{0x3e, 0x41, 0x41, 0x41, 0x22} // 43 C
,{0x7f, 0x41, 0x41, 0x22, 0x1c} // 44 D
,{0x7f, 0x49, 0x49, 0x49, 0x41} // 45 E
,{0x7f, 0x09, 0x09, 0x09, 0x01} // 46 F
,{0x3e, 0x41, 0x49, 0x49, 0x7a} // 47 G
,{0x7f, 0x08, 0x08, 0x08, 0x7f} // 48 H
,{0x00, 0x41, 0x7f, 0x41, 0x00} // 49 I
,{0x20, 0x40, 0x41, 0x3f, 0x01} // 4a J
,{0x7f, 0x08, 0x14, 0x22, 0x41} // 4b K
,{0x7f, 0x40, 0x40, 0x40, 0x40} // 4c L
,{0x7f, 0x02, 0x0c, 0x02, 0x7f} // 4d M
,{0x7f, 0x04, 0x08, 0x10, 0x7f} // 4e N
,{0x3e, 0x41, 0x41, 0x41, 0x3e} // 4f O
,{0x7f, 0x09, 0x09, 0x09, 0x06} // 50 P
,{0x3e, 0x41, 0x51, 0x21, 0x5e} // 51 Q
,{0x7f, 0x09, 0x19, 0x29, 0x46} // 52 R
,{0x46, 0x49, 0x49, 0x49, 0x31} // 53 S
,{0x01, 0x01, 0x7f, 0x01, 0x01} // 54 T
,{0x3f, 0x40, 0x40, 0x40, 0x3f} // 55 U
,{0x1f, 0x20, 0x40, 0x20, 0x1f} // 56 V
,{0x3f, 0x40, 0x38, 0x40, 0x3f} // 57 W
,{0x63, 0x14, 0x08, 0x14, 0x63} // 58 X
,{0x07, 0x08, 0x70, 0x08, 0x07} // 59 Y
,{0x61, 0x51, 0x49, 0x45, 0x43} // 5a Z
,{0x00, 0x7f, 0x41, 0x41, 0x00} // 5b [
,{0x02, 0x04, 0x08, 0x10, 0x20} // 5c \
,{0x00, 0x41, 0x41, 0x7f, 0x00} // 5d ]
,{0x04, 0x02, 0x01, 0x02, 0x04} // 5e ^
,{0x40, 0x40, 0x40, 0x40, 0x40} // 5f _
,{0x00, 0x01, 0x02, 0x04, 0x00} // 60 `
,{0x20, 0x54, 0x54, 0x54, 0x78} // 61 a
,{0x7f, 0x48, 0x44, 0x44, 0x38} // 62 b
,{0x38, 0x44, 0x44, 0x44, 0x20} // 63 c
,{0x38, 0x44, 0x44, 0x48, 0x7f} // 64 d
,{0x38, 0x54, 0x54, 0x54, 0x18} // 65 e
,{0x08, 0x7e, 0x09, 0x01, 0x02} // 66 f
,{0x0c, 0x52, 0x52, 0x52, 0x3e} // 67 g
,{0x7f, 0x08, 0x04, 0x04, 0x78} // 68 h
,{0x00, 0x44, 0x7d, 0x40, 0x00} // 69 i
,{0x20, 0x40, 0x44, 0x3d, 0x00} // 6a j
,{0x7f, 0x10, 0x28, 0x44, 0x00} // 6b k
,{0x00, 0x41, 0x7f, 0x40, 0x00} // 6c l
,{0x7c, 0x04, 0x18, 0x04, 0x78} // 6d m
,{0x7c, 0x08, 0x04, 0x04, 0x78} // 6e n
,{0x38, 0x44, 0x44, 0x44, 0x38} // 6f o
,{0x7c, 0x14, 0x14, 0x14, 0x08} // 70 p
,{0x08, 0x14, 0x14, 0x18, 0x7c} // 71 q
,{0x7c, 0x08, 0x04, 0x04, 0x08} // 72 r
,{0x48, 0x54, 0x54, 0x54, 0x20} // 73 s
,{0x04, 0x3f, 0x44, 0x40, 0x20} // 74 t
,{0x3c, 0x40, 0x40, 0x20, 0x7c} // 75 u
,{0x1c, 0x20, 0x40, 0x20, 0x1c} // 76 v
,{0x3c, 0x40, 0x30, 0x40, 0x3c} // 77 w
,{0x44, 0x28, 0x10, 0x28, 0x44} // 78 x
,{0x0c, 0x50, 0x50, 0x50, 0x3c} // 79 y
,{0x44, 0x64, 0x54, 0x4c, 0x44} // 7a z
,{0x00, 0x08, 0x36, 0x41, 0x00} // 7b {
,{0x00, 0x00, 0x7f, 0x00, 0x00} // 7c |
,{0x00, 0x41, 0x36, 0x08, 0x00} // 7d }
,{0x10, 0x08, 0x08, 0x10, 0x08} // 7e ~
,{0x78, 0x46, 0x41, 0x46, 0x78} // 7f DEL
};
void setup(void) {
LCDInit(); //Init the LCD
}
void loop(void) {
LCDClear();
// LCDBitmap(SFEFlame);
// delay(1000);
// LCDClear();
// LCDBitmap(SFEFlameBubble);
/// delay(1000);
// LCDClear();
// LCDBitmap(awesome);
// delay(1000);
//LCDClear();
LCDString(“Hello World!”);
// delay(1000);
}
void gotoXY(int x, int y) {
LCDWrite(0, 0x80 | x); // Column.
LCDWrite(0, 0x40 | y); // Row. ?
}
//This takes a large array of bits and sends them to the LCD
void LCDBitmap(char my_array[]){
for (int index = 0 ; index < (LCD_X * LCD_Y / 8) ; index++)
LCDWrite(LCD_DATA, my_array[index]);
}
//This function takes in a character, looks it up in the font table/array
//And writes it to the screen
//Each character is 8 bits tall and 5 bits wide. We pad one blank column of
//pixels on each side of the character for readability.
void LCDCharacter(char character) {
LCDWrite(LCD_DATA, 0x00); //Blank vertical line padding
for (int index = 0 ; index < 5 ; index++)
LCDWrite(LCD_DATA, ASCII[character – 0x20][index]);
//0x20 is the ASCII character for Space (‘ ‘). The font table starts with this character
LCDWrite(LCD_DATA, 0x00); //Blank vertical line padding
}
//Given a string of characters, one by one is passed to the LCD
void LCDString(char *characters) {
while (*characters)
LCDCharacter(*characters++);
}
//Clears the LCD by writing zeros to the entire screen
void LCDClear(void) {
for (int index = 0 ; index < (LCD_X * LCD_Y / 8) ; index++)
LCDWrite(LCD_DATA, 0x00);
gotoXY(0, 0); //After we clear the display, return to the home position
}
//This sends the magical commands to the PCD8544
void LCDInit(void) {
//Configure control pins
TRISCbits.TRISC3=0;
TRISCbits.TRISC4=0;
TRISCbits.TRISC5=0;
TRISCbits.TRISC6=0;
TRISCbits.TRISC7=0;
LCD_DIN=0;
LCD_CLK=0;
LCD_DC=0;
// pinMode(PIN_SCE, OUTPUT);
// pinMode(PIN_RESET, OUTPUT);
// pinMode(PIN_DC, OUTPUT);
// pinMode(PIN_SDIN, OUTPUT);
// pinMode(PIN_SCLK, OUTPUT);
//Reset the LCD to a known state
// digitalWrite(PIN_RESET, LOW);
LCD_RST=0;
// digitalWrite(PIN_RESET, HIGH);
LCD_RST=1;
LCDWrite(LCD_COMMAND, 0x21); //Tell LCD that extended commands follow
LCDWrite(LCD_COMMAND, 0xBB); //Set LCD Vop (Contrast): Try 0xB1(good @ 3.3V) or 0xBF if your display is too dark
LCDWrite(LCD_COMMAND, 0x04); //Set Temp coefficent
LCDWrite(LCD_COMMAND, 0x14); //LCD bias mode 1:48: Try 0x13 or 0x14
LCDWrite(LCD_COMMAND, 0x20); //We must send 0x20 before modifying the display control mode
LCDWrite(LCD_COMMAND, 0x0C); //Set display control, normal mode. 0x0D for inverse
}
//There are two memory banks in the LCD, data/RAM and commands. This
//function sets the DC pin high or low depending, and then sends
//the data byte
void LCDWrite(unsigned char data_or_command, unsigned char data) {
unsigned char i,d;
d=data;
if(data_or_command==0)LCD_DC=0;
else LCD_DC=1;
//data_or_command; //Tell the LCD that we are writing either to data or a command
//Send the data
LCD_CE=0;
// digitalWrite(PIN_SCE, LOW);
for(i=0;i<8;i++)
{
LCD_DIN=0;
if(d&0x80)LCD_DIN=1;
LCD_CLK=1;
d<<=1;
LCD_CLK=0;
}
// shiftOut(PIN_SDIN, PIN_SCLK, MSBFIRST, data);
LCD_CE=1;
// digitalWrite(PIN_SCE, HIGH);
}
void InitApp(void)
{
/* TODO Initialize User Ports/Peripherals/Project here */
/* Setup analog functionality and port direction */
ANSELA=0;ANSELB=0;ANSELC=0;
TRISA=0;TRISB=0;TRISC=0;
/* Initialize peripherals */
OPTION_REG=0x80;
/* Enable interrupts */
TMR0IE=1;
GIE=1;
}

One thought on “Nokia 5110 Example C source – PIC16F

  1. Hi
    I was using this code for working with the PIC24FJ and nokia 5110LCD. Firstly how does the code work without the main function. I tried using with the main function but the problem is my entire display is showing the same string (using string function) as if it is in a loop. I am not able to get the goto function to work so as to display the content at the necessary location. Please help me out as this is very urgent for me at the moment.
    Thank you in advance.

Leave a Reply

Your email address will not be published. Required fields are marked *

*